首页 > 专家说

热管原理,及图

来源:新能源网
时间:2024-08-17 15:50:46
热度:

热管原理,及图热心网友:热管技术热管这项技术早在1963年就在位于美国的LosAlamos国家实验室中诞生了,其发明人是G.M.Grover。热管属于一种传热元件,它充分利用了热传

热心网友:热管技术热管这项技术早在1963年就在位于美国的LosAlamos国家实验室中诞生了,其发明人是G.M.Grover。热管属于一种传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力已远远超过任何已知金属的导热能力。以前热管技术一直被广泛应用在宇航、军工等行业,被引入散热器制造业还是近几年的事情。 正是因为有热管技术的存在,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠大风量风扇获得更好散热效果的传统散热模式。取而代之的是采用低转速、低风量风扇配合热管技术的崭新散热模式。热管技术更为PC的静音时代带来了契机。 走近热管看究竟热管技术为什么会有如此的高性能呢?这个问题我们要从热力学的角度看。物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。热传递有3种方式:辐射、对流、传导,其中热传导最快。 热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。常见的热管均是由管壳、吸液芯和端盖组成。制作方法是将热管内部抽成负压状态,然后充入适当的液体,这种液体沸点很低,容易挥发。管壁有吸液芯,由毛细多孔材料构成。 热管一端为蒸发端,另外一端为冷凝端。当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。 热管技术的特点高速度的热传导效果:- 重量轻且构造简单。- 温度分布平均,可作均温或等温动作。- 热传输量大。热传送距离长。- 没有主动元件,本身并不耗电。- 可以在无重力力场的环境下使用。- 没有热传方向的限制,蒸发端以及凝结端可以互换。- 容易加工以改变热传输方向。- 耐用、寿命长、可靠,易存放保管。 热管的制作工艺看似简单的热管其实对工艺的要求是非常高的,下面让我们来一起看看它的工艺及测试:- 工作流体选定:非燃性、操作温度、热传量、容许热阻、经济性。- 容器材料选定:热传导性、真空维持度、耐压、流体相容性(腐蚀、化学反应)。- 容器及注入加工:长度、去毛边、洗净、封口、保存。泄漏测试就:氦气泄漏探测、高压气泡检查(防止容器出现针孔、裂隙以及氧化)。- 真空烘烤:高温、真空的环境下对热管组件作毛细表面脱水、脱氧处理。- 工作流体真空处理:加热驱出(液态)、气态液化(气态)、真空补汞法。注入封口:钨电极纯气熔接(这对于导热管来说,是唯一的防漏封口法)。- 抽样测试:氧化/腐蚀耐用性测试、最大热传效能测试、最大弯曲/扁平后泄漏测试、最大弯曲/扁平后效能测试、寿命测试。 其他特性限制在热传输上,热管也有一些限制:- 黏性限制:低温的蒸气流动黏性力。- 音速限制:蒸气流达音速的塞流现象。- 飞散限制:蒸气流速过大,超过液体表面张力,使液滴飞散的剪断力。- 毛细管限制:流体的流量大于毛细输送能力。此现象易使毛细干燥,烧毁导管。- 沸腾限制:所有流体都达沸腾汽化时,会降低传热的能力。

###

热心网友:从热力学的角度看,为什么热管会拥有如此良好的导热能力呢?物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。从热传递的三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 热管的基本工作 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; (2)液体在蒸发段内的(液--汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽.液分界面上凝结: (5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。 热管制造 1 热管零部件及其加工 热管的主要零部件为管壳、端盖(封头)、吸液芯、腰板(连接密封件)四部分。不同类型的热管对这些零部件有不同的要求。 2 管壳 热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子可以是标准圆形,也可以是异型的,如椭圆形、正方形、矩形、扁平形、波纹管等。管径可以从2mm到200mm,甚至更大。长度可以从几毫米到l00米以上。低温热管换热器的管材在国外大多采用铜、铝作为原料。采用有色金属作管材主要是为了满足与工作液体相容性的要求。 3 端盖 热管的端盖具有多种结构形式,它与热管舶连接方式也因结构形式而异。端盖外圆尺寸可稍小于管壳。配合后,管壳的突出部分可作为氩弧焊的熔焊部分,不必再填焊条,焊口光滑乎整质量容易保证。 旋压封头是国内外常采用的一种形式,旋压封头是在旋压机上直接旋压而成,这种端盖形式外型美观,强度好、省材省工,是一种良好的端盖形式。 4 吸液芯结构 吸液芯是热管的一个重要组成部分。吸液芯的结构形式将直接影响到热管和热管换热器的性能。近年来随着热管技术的发展,各国研究者在吸液芯结构和理论研究方面做了大量工作,下面对一些典型的结构作出简赂的介绍。