黄土高原雨养区不同耕作方式、氮肥水平及秸秆覆盖对小麦生产力及温室气体(CO_2、N_2O)的影响
黄土高原雨养区不同耕作方式、氮肥水平及秸秆覆盖对小麦生产力及温室气体(CO_2、N_2O)的影响【摘要】:在旱作生态系统中,温室气体尤其是二氧化碳和氧化亚氮排放浓度的增加显著影响生
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:S512.1;S314
【目录】:
- ABSTRACT5-8
- 摘要8-15
- 1. Introduction15-18
- 2. Review of Literature18-25
- 3. Materials and methods25-39
- 3.1 Experimental site25
- 3.2 Experimental design and treatments25-26
- 3.3 Measurements26-27
- 3.4 Statistics27
- 3.5 Monitoring of CO_2emissions27-29
- 3.6 Soil moisture measurements for CO_2emissions rates29
- 3.7 Monitoring of emission of N_2O29-31
- 3.8 Soil organic carbon (SOC) measurements31
- 3.9 Total soil Nitrogen31-32
- 3.10 Soil pH32
- 3.11 Soil Urease32-33
- 3.12 Soil Invertase33-34
- 3.13 Soil Bulk density34
- 3.14 Soil Porosity34
- 3.15 Soil Compactness34-35
- 3.16 Weeds infestation35
- 3.17 Water use efficiencies35-36
- 3.18 Nitrogen use efficiencies36
- 3.19 Crop growth rates measurements36
- 3.20 Flag leaf area36-37
- 3.21 Flag leaf chlorophyll contents37
- 3.22 Photosynthesis data37-39
- 4. Results & Discussion39-219
- 4.0 Emissions of CO_239-60
- 4.0.1 Soil CO_2fluxes39
- 4.0.2 Effects of tillage methods on the emissions of CO_239-40
- 4.0.3 Effects of cropping years on the emissions of CO_240
- 4.0.4 Effects of mulches on the emissions of CO_240
- 4.0.5 Effects of N fertilizer levels on the emissions of CO_240
- 4.0.6 Cumulative emissions of CO_240-42
- 4.0.7 Soil temperatures versus emissions of CO_242
- 4.0.8 Soil moistures versus emissions of CO_242
- 4.0.9 Soil organic carbon versus emissions of CO_242-43
- 4.0.10 Effects of seasonal variations on the emissions of CO_243
- 4.0.11 Discussion43
- 4.0.12 Soil CO_2fluxes43-44
- 4.0.13 Effects of tillage methods on the emissions of CO_244
- 4.0.14 Effects of corn residue mulch on the emissions of CO_244-45
- 4.0.15 Effects of N fertilizer levels on the emissions of CO_245-46
- 4.0.16 Effects of cropping years on the emissions of CO_246-47
- 4.0.17 Effects of soil temperatures, soil moistures and soil organic carbons on the emissions of CO_247-60
- 4.1 Emissions of Nitrous oxide (N_2O)60-71
- 4.1.1 Results61-71
- 4.2 Soil Bulk density71-74
- 4.3 Soil Porosity74-76
- 4.4 Soil Compactness76-78
- 4.4.1 Results & Discussion77-78
- 4.5 Soil pH78-82
- 4.5.1 Changes in soil pH from the 0-10 cm soil depth79-80
- 4.5.2 Changes in soil pH from the 10-20 cm soil depth80-81
- 4.5.3 Effects of different planting years81
- 4.5.4 Effects of Mulch kinds81
- 4.5.5 Effects of N fertilizer levels81-82
- 4.6 Changes in soil pH from the 20-40 cm soil depth82-87
- 4.6.1 Effects of tillage methods82
- 4.6.2 Effects of different planting years on the soil pH82
- 4.6.3 Effects of mulch kinds on soil pH82
- 4.6.4 Effects of N fertilizer levels on the soil pH82
- 4.6.5 Changes in soil pH due to the different tillage methods X mulch kind’s interactions82
- 4.7.6 Changes in soil pH due to different tillage methods X N fertilizer levels interactions82-83
- 4.6.7 Changes in the soil pH due to different tillage methods X planting years interactions83
- 4.6.8 Changes in soil pH in case of planting years X tillage methods interactions83
- 4.6.9 Changes in soil pH in case of planting years X N fertilizer levels interactions83
- 4.6.10 Changes in soil pH due to the different mulch kinds X N fertilizer levels interactions83-87
- 4.7 Soil Organic Carbon (SOC) status of the soil87-99
- 4.7.1 Effects of tillage methods on the SOC88
- 4.7.2 Effects of Plating years on the SOC88
- 4.7.3 Effects of mulch kinds on the SOC88
- 4.7.4 Effects of N fertilizer levels on the SOC88-89
- 4.7.5 Changes in Soil Organic Carbon (SOC) from 0-10 cm soil depth89-90
- 4.7.6 Changes in Soil Organic Carbon (SOC) from 10-20 cm soil depth90-92
- 4.7.7 Changes in Soil Organic Carbon (SOC), contents from the 20-40 cm soil depth92-93
- 4.7.8 Average changes in Soil Organic Carbon (SOC), contents from 0-40 cm soil depth93-99
- 4.8 Total soil Nitrogen99-112
- 4.8.1 Changes in total soil Nitrogen from 0-10 cm soil depth99-101
- 4.8.2 Changes in soil Nitrogen from the 10-20 cm soil depth101-103
- 4.8.3 Changes in total soil Nitrogen from 20-40 cm soil depth103-105
- 4.8.4 Average changes in total soil Nitrogen from the 0-40 cm soil depth105-112
- 4.9 Changes in soil C/N Ratio112-122
- 4.9.1 Changes in soil C/N ratio in case of 0-10 cm soil depth112-114
- 4.9.2 Changes in soil C/N ratio in case of 10-20 cm soil depth114-116
- 4.9.3 Changes in soil C/N ratio in case of 20-40 cm soil depth116-117
- 4.9.4 Changes in soil C/N ratio in case of 0-40 cm soil depth117-122
- 4.10 Changes in soil organic matter (SOM) due to the different management practices during the two planting years (2010-12)122-132
- 4.10.1 Changes in soil organic matter (SOM) from the 0-10 cm soil depth124-125
- 4.10.2 Changes in Soil Organic Matter (SOM) from the 10-20 cm soil depth125-132
- 4.11 Soil enzymes132-140
- 4.11.1 Urease133-135
- 4.11.2 Changes in soil enzyme Urease on the 5 leaf stage from the 10-20 cm soil depth135-137
- 4.11.3 Effects of different tillage methods on the soil enzyme Urease from the 20-40 cm soil depth137-140
- 4.12 Urease on Harvesting Stage140-148
- 4.12.1 Status of soil enzyme Urease on the wheat crop harvesting stage from the 0-10 cm soil depth140-142
- 4.12.2 Status of soil enzyme Urease on the wheat crop harvesting stage from the 20 cm soil depth142-144
- 4.12.3 Changes in soil enzyme Urease on the wheat crop harvesting stage from the 20-40 cm soil depth144-148
- 4.13 Soil Invertase on the 5 leaf stage148-155
- 4.13.1 Status of soil enzyme Invertase on the 5 leaf stage from the 0-10 cm soil depth148-150
- 4.13.2 Status of soil enzyme Invertase on the 5 leaf stage from the 10-20 cm soil depth150-152
- 4.13.3 Status of soil enzyme Invertase on the 5 leaf stage from the 20-40 cm soil depth152-155
- 4.14 Status of soil enzyme Invertase on the wheat crop harvesting stage155-162
- 4.14.1 Status of soil enzyme Invertase on the wheat crop harvesting stage from the 0-10 cm soil depth155-157
- 4.14.2 Status of soil enzyme Invertase on the wheat harvesting stage from the cm soil depth157-159
- 4.14.3 Status of soil enzyme Invertase on the wheat crop harvesting stage from the 20-40 cm soil depth159-162
- 4.15 Changes in wheat crop growth due to the different management practices during the two cropping years (2010-12)162-163
- 4.16 Changes in flag leaf area, flag leaf chlorophyll’s contents and wheat crop photosynthesis and its related different processes on the different crop growth stages163-188
- 4.16.1 Flag leaf area164
- 4.16.2 Changes in flag leaf chlorophyll contents164-165
- 4.16.3 Changes in photosynthesis on the different crop growth stages165-166
- 4.16.4 Changes in Stomatal conductance’s on the different crop growth stages166-168
- 4.16.5 Changes in the Intercellular concentrations of carbon dioxide (Ci) on the different crop growth stages168-170
- 4.16.6 Changes in Transpiration rates on the different crop growth stages170-172
- 4.16.7 Changes in intrinsic water use efficiencies (WUEi ) on the different crop growth stages172-188
- 4.17 Weeds infestation188-194
- 4.18 Wheat crop yield194-201
- 4.19 Water use efficiencies201-210
- 4.19.1 Evapotranspiration201-203
- 4.19.2 Grains water use efficiency203-205
- 4.19.3 Biomass water use efficiency205-207
- 4.19.4 Rainfall water use efficiency207-210
- 4.20 Nitrogen use efficiencies210-213
- 4.21 Economics of planting of wheat crop by using the different crop management practices213-216
- 4.22 Correlations between the different related factors with the total emissions of CO_2216-219
- 4.22.1 Correlations of different soil parameters with the emissions of CO_2216-218
- 4.22.2 Correlations of crop photosynthesis with the total emissions of CO_2218
- 4.22.3 Correlations of different environmental factors with the total emissions of CO_2 204218-219
- 5. Conclusion219-223
- References223-239
- Acknowledgement239-241
- C.V241-242
您可以在本站搜索以下学术论文文献来了解更多相关内容
温度升高对湿地系统温室气体排放的影响 王洋;刘景双;窦晶鑫;赵光影;
高效有机肥对设施栽培土壤温度及桃生长发育的影响 王孝娣,王海波,翟衡
不同N、K水平对青引1号燕麦生产性能的影响 王军萍;颜红波;周青平;
施肥对青引1号燕麦产量及构成性状的影响 何玉龙;周青平;纪亚君;颜红波;雷生春;贾志锋;刘文辉;梁国玲;
草地生态系统土壤微生物量及其影响因子研究进展 何亚婷;董云社;齐玉春;肖胜生;刘欣超;
Methane and Nitrous Oxide Emissions from Three Paddy Rice based Cultivation Systems in Southwest China 江长胜;王跃思;郑循华;朱波;黄耀;郝庆菊;
Comparison of CO_2 Effluxes and Their Driving Factors Between Two Temperate Steppes in Inner Mongolia, China 齐玉春;董云社;Manfred DOMROES;耿元波;刘立新;刘杏认;
Greenhouse Gas Emissions from Agro-Ecosystems and Their Contribution to Environmental Change in the Indus Basin of Pakistan M. Mohsin IQBAL;M. Arif GOHEER;
不同施肥处理下双季稻田CH_4和N_2O排放的全年观测研究 石生伟;李玉娥;李明德;万运帆;高清竹;彭华;秦晓波;
耕作措施对陕西耕作土壤碳储量的影响模拟 张凡;李长生;王政;
冬小麦返青-拔节期土壤的自养和异养呼吸研究 陈书涛;黄耀;
长期施肥下钾肥农学效率演变研究进展 张会民;徐明岗;
臭氧污染对土壤物理结构与团聚体形成的影响 于伟伟;王郦睿;张东亮;寇太记;苗艳芳;
不同秸秆覆盖模式对烟草青枯病发生的抑制效应研究 刘宪臣;丁伟;崔伟伟;郑世燕;程小龙;
水杨酸与杀菌剂联合作用控制烟草青枯病的研究 程小龙;丁伟;刘宪臣;崔伟伟;郑世燕;
不同碳氮比植物残体施用对三峡库区土壤N_2O排放的影响 胡荣桂;林杉;高璟赟;聂文婷;
生草栽培对果园土壤团聚体内有机碳的影响 王义祥;翁伯琦;黄毅斌;王成己;叶菁;
生草栽培下果园土壤固碳潜力研究 翁伯琦;王义祥;黄毅斌;王成己;叶菁;
不同来源生物黑炭特性对比及其在农业环保中的应用 廉菲;唐世荣;祝凌燕;
雨水就地利用及蓄水农用保障性机制 张卫华
长江源区高寒草地生态系统变化及其碳排放对气候变化的影响 白炜
澳大利亚三种森林类型土壤有效碳和氮库及相关微生物过程研究 鲁顺保
模拟氮沉降对华西雨屏区苦竹人工林生态系统碳循环过程和特征的影响 涂利华
菜地土壤温室气体氧化亚氮排放及其控制研究 邱炜红
土壤动物活动对农田温室气体(CO_2、N_2O)排放的影响 罗天相
基于模型和GIS技术估算1955-2005年中国稻田甲烷排放 王平
基于碳组分分析的稻田土壤固碳优势及其保持途经研究 黄山
中国农田化学氮肥施用和生产中温室气体(N_2O、CO_2)减排潜力估算 汤勇华
土壤微生物群落结构及动态随水稻品种和生育期的变化及其农田温室气体释放意义 Qaiser Hussain
鄂南棕红壤区施用石灰对桃园土壤和树体营养的效应研究 蔡东
耕作方式及其转变对麦玉两熟农田土壤CH_4、N_2O排放和固碳能力的影响 田慎重
亚热带樟树和马尾松林土壤氮矿化的动态研究 段伟
不同耕作方式下紫色水稻土农田生态系统甲烷排放的研究 唐其文
不同耕作方式下紫色水稻土农田生态系统CO_2和N_2O的排放研究 张军科
RothC模型模拟我国典型旱地土壤的有机碳动态及平衡点 王金洲
中国农业源非二氧化碳类温室气体减排政策研究 蔡松锋
施肥对黑土有机碳组分及碳收支的影响 芦思佳
基于低碳经济的中国碳税实施研究 田红莲
施肥对水稻植株碳氮分配与积累的影响 冯蕾
日光温室增施CO_2对黄瓜增产效果研究初报 杨文斌,贾阿璞,李萍,张玉琴,晋水泉
新型CO_2复合气肥
增加CO_2和气候变化对作物的影响 B.A.Kimball,李善安
CO_2气体肥料的几种生产方法 王洪记
增施CO_2和生长调节剂对草莓光合作用的影响 杜尧舜
增施CO_2对4种果菜生长发育的影响 范双喜,谷建田,韦强,宋学锋
介绍一种新型多功能便携式O_2/CO_2测量仪 刘海东
怎样在大棚内用好CO_2固体气肥 李恒,李振勇,申凌霞
高浓度CO_2下红松幼苗根系呼吸对土壤呼吸的贡献(英文) 刘颖,韩士杰,李雪峰,周玉梅,张军辉,贾夏
作物根系对CO_2的吸收与同化 陈祖义,张祥生,成冰
N_2O与CO_2应用于不同跨临界循环的性能比较 钱文波;晏刚;冯永斌;张敏;陶锴;
生物能源与CO_2减排领域的热点战略研究方向——微藻生物柴油产业化技术的发展思路及若干科学问题分析 李元广;王伟良;金建;
长时期的高CO_2浓度生长条件对羊栖菜光合作用没有下调的作用 邹定辉;
CO_2激光在自体表皮移植术中的应用 冯振刚;
超临界CO_2萃取牡蛎中多不饱和脂肪酸条件优化的研究 刘程惠;胡文忠;姜爱丽;田密霞;王艳颖;何煜波;金黎明;
不锈复合钢板的CO_2半自动焊接 南北红;赵青松;
海南香茅油超临界CO_2萃取条件的优化和筛选 王勇;李海龙;张俊清;赖伟勇;刘明生;
超临界CO_2萃取麻疯树籽油工艺的响应面优化 钟华;蒲彪;胡旭;
离子液体吸收CO_2的研究进展 樊丽华;聂阳;
固体胺纤维的制备及其对CO_2的吸附再生性能研究 杨营;林日嘉;吴清华;陈水挟;
春覆秸秆可促果园高产 吕纪增
秸秆何时由“鸡肋”变“宝贝”? 本报记者 罗盘
果园秸秆覆盖好处多 临城县发展改革局农业区划办公室(054300) 张保建
果园秸秆覆盖技术 省农业专家服务团果业专家 魏旭
果园覆盖秸秆好处多 李凯文
果园秸秆覆盖技术
游仙:秸秆覆盖栽培抗旱效果好 本报记者 魏星奎 实习记者 刘鑫
果园秸秆覆盖技术 临城县发展改革局农业区划办公室 张保建
麦秸覆盖玉米田 节水又增产 中国科学院遗传与发育生物学研究所 胡春胜 陈素英
我市秸秆覆盖技术保墒显著促粮增收 记者丁维丽
黄土高原雨养区不同耕作方式、氮肥水平及秸秆覆盖对小麦生产力及温室气体(CO_2、N_2O)的影响 Sikander Khan Tanveer
土壤动物活动对农田温室气体(CO_2、N_2O)排放的影响 罗天相
北京西山地区森林土壤中CO_2、N_2O和CH_4气体的排放通量及动态研究 孙向阳
中国农田化学氮肥施用和生产中温室气体(N_2O、CO_2)减排潜力估算 汤勇华
高功率轴快流CO_2激光器气体流场及热交换的模拟与优化 黄鸿雁
秸秆覆盖保护性种植的土壤养分效应和作物生理生化响应机制研究 薛兰兰
大气CO_2、CH_4和CO浓度资料再分析及源汇研究 张芳
与厌氧氨氧化相匹配的亚硝化过程N_2O释放研究 孔强
含N_2O的范德华团簇的结构和超流性质的理论模拟 王乐成
施肥对黑土碳氮转化过程的影响 乔云发
不同水肥措施对设施菜地土壤CO_2和N_2O排放的影响 姜宁宁
大连湾海域CO_2、CH_4和N_2O的分布及海—气交换通量研究 王芹
黄淮海平原农田土壤CO_2和N_2O释放及区域模拟评价研究 李虎
不同耕作方式下紫色水稻土农田生态系统CO_2和N_2O的排放研究 张军科
等高绿篱—农业复合系统土壤CO_2和N_2O排放特征 莫琼
新造船舶CO_2指数计算方法研究 徐善雷
高密度CO_2诱导羊肉糜凝胶的形成因素及机理初探 曲亚琳
表面改性对活性炭物理、化学性质及CO_2吸附性能的影响 朱赛
表面改性对活性炭物理、化学性质及CO_2吸附性能的影响 朱赛
球形活性炭对CO_2吸附行为研究 谢菲
上一篇:除尘风机高压变频调速节能改造
-
我国农作物秸秆资源及其利用与开发2024-08-19
-
稻茬麦免少耕秸秆覆盖配套栽培技术研究初报2024-08-19
-
水电展望预备会议探讨与水电相关的温室气体问题2024-08-19
-
秸秆还田下稻田温室气体排放及其对水分管理的响应2024-08-18
-
滴灌条件下秸秆覆盖与施氮对土壤水热变化和夏玉米生长的影响2024-08-18
-
半腐解秸秆覆盖下旱作水稻氮素营养调控研究2024-08-18
-
渭北旱原不同量秸秆覆盖对农田环境及春玉米生理生态的影响2024-08-18
-
我国农作物秸秆板产业化发展的动因及模式研究2024-08-18
-
作物秸秆的微生物降解研究2024-08-18
-
农作物秸秆在亚/超临界醇中的液化2024-08-18
-
不同秸秆还田处理下农田温室气体排放的DNDC模型模拟及模型适应性研究2024-08-18
-
作物秸秆栽培的黑木耳子实体耐旱机制2024-08-18
-
黑土区秸秆覆盖耕作技术保墒机理及生态效益研究2024-08-18
-
作物秸秆沼气转化潜力及厌氧种泥活性保存规律研究2024-08-18
-
利用酵母重组技术提高作物秸秆乙醇发酵的研究2024-08-18