首页 > 行业资讯

核电真的会毁了中国吗?

来源:新能源网
时间:2017-06-19 11:30:39
热度:

核电真的会毁了中国吗?核电废物问题,在核电发展的过程中确实是不可回避的问题,反核的人士只有选择这个话题,才能真的让专家们皱一下眉头。为什么呢?第一,因为核废物问题复杂;第二,核废物

  核电废物问题,在核电发展的过程中确实是不可回避的问题,反核的人士只有选择这个话题,才能真的让专家们皱一下眉头。为什么呢?

  第一,因为核废物问题复杂;

  第二,核废物问题没有彻底解决;

  第三,熟悉核废物问题的专家不多。

  核废物最显著的特点是它的放射性。

  放射性来自于废物中含有的一些成分,这些成分就是那些具有放射性的原子(或原子核)。由于这些原子的结构不稳定,会随着时间自发衰变,衰变过程放出放射性,也放出一些热量。

  也请注意:这些放射性的原子会随着衰变而逐步变少,衰变越快,减少的也越快。原子或原子核的衰变是它自身规律决定的,与外界的温度、压力等无关、也和原子自身所在的分子形态、所处的物理、化学的状态无关。所以说,特定原子核的衰变(基本)是无法改变的。

  那么,要减少废物的放射性,基本就只有两个方法。第一是消耗时间,让核废物里面放射性原子核自己衰变。所有放射性原子都有个重要的物理量:半衰期,可能是几秒、也可能是几十万年。对特定一堆同种放射性原子而言,每过一个半衰期,放射性就减少一半、它的放热也就减少一半。

  有趣的是,放射性的强弱(活度A)也是和原子核的半衰期(T1/2)密切相关的。具体来说就是A=N*(ln2/T1/2),其中的N是指放射性原子/原子核的数量。这说明什么呢?放射性强的寿命短、放射性“衰减”快;寿命长的放射性弱、放射性祸害没有那么大。——这一点,作者也没有告诉大家,笼统的把放射性强和延续时间长混为一谈,这就不对了。

  举个栗子,刚刚从核电站卸出的燃料(乏燃料)的放射性很强。放射性的主要贡献来自于短半衰期的原子,他们的衰减非常快。停止核反应1天,放射性减少到不足1/10,;3天再减少到1/10;1年再减少10倍;10年再减少10倍……当然以后的减少会越来越慢,因为放射性强的衰变快,早期都死光了,后面的寿命长,衰减就慢了。

  那么放射性半衰期长的那些原子怎么处理呢?——我们先看看它们有多少,从质量上去估算,大约相当于乏燃料重量的1/100。这1/100主要是钚(Pu,它自己就大约1/100)和其它一些长寿命放射性原子(其它这些加起来大约1/1000)。这1/100是不包括乏燃料中铀的,因为铀(绝大部分)本来就是地球上存在的,都是咱们从地表土壤、岩石中提取出来利用的。那么乏燃料有多少呢?每个百万千瓦机组每年大约20-25吨。这个数字太抽象,借用美国人的一个形象比喻:

  “美国利用核电至今所有产生的乏燃料如果首尾相接、并排放置的密集摆放,用一个美式足球场地堆积6.4m高就足够了”。

  而美国有104个反应堆,平均每个堆大约运行了三十多年了。即使我国现在在建和运行的50个左右机组都马上开足了运行,要积累美国这么多的乏燃料,也要到2060年以后了。这也是核电的一个优势所在,废物量非常的少。乏燃料总量少,其中只有1/100是长寿命废物,还主要是钚。如果把乏燃料中1/100的钚回收利用(这就是乏燃料后处理啊!),不作为核废物处置,那么长寿命放射性废物的总量大约相当于乏燃料的1/1000。

  所谓要管理20万年的放射性物质有多少?当然,实际上不会有这么少,因为要完全分离的技术难度和成本都很高。

  对长寿命的放射性原子核的处理就要用到第二种减少放射性的办法,就是所谓的“嬗变”。简单说就是用中子去打那些放射性原子核,人工诱导它变成短半衰期或者稳定的原子核,让它更快衰变甚至即刻达到无放射性。我的心目中,这个方法是解决核废物问题的“终极之道”,其价值不亚于核聚变。不过,目前同样处于研究阶段,也期待大家多多关注!

  很多人心目中的一个重要的问题“用寿命100年的混凝土,能保证核废物20万年存放的安全吗?”——这个问题的信息量太大了!容我理清思路:

  第一,正面回答这个问题,答案是No!谁说Yes谁在胡说八道。

  第二,所说的混凝土建筑是存放核废物的场所。可是放射性废物只是被一些混凝土包裹着吗?卖月饼的都知道要包装7、8层,处理核废物的人当然清楚怎么才能把放射性废物与人类和环境最大限度的隔离。业内有个“纵深防御”的设计思想,就是哪怕有一层(比如混凝土建筑物)防御失效时,后面还会有一长串防御措施等着生效呢。

  比如处置设施里面会有岩石、粘土,还有回填材料,还有十几、几十厘米厚的抗腐蚀金属容器,还有废物装载容器,还有废物自己的包壳或特殊形态(玻璃体)保护等等。——牢靠的很!几乎是目前能想到的最稳妥可靠的方法。

  多说几句,科学家们仍然在不断改进核废物的处置方法。但我觉得,他们最大的难题不是让处置方案更加稳妥可靠,而是如何去证明它们不会出问题。证实容易,证伪难,我们嘲笑杞人忧天,但是你能证明“天不会塌下来”吗?

  第三,即使是混凝土建筑物,就真的像大家所想象的那么不堪吗?也不尽然。埃及的金字塔,矗立在那里有三、四千年了,建筑物依然保持完整(埃及近代并没有仿制品出现)。

  我觉得,4000年前的科技造出来的建筑能存在4000年。咱们是不是该有点信心,现在的科技所建造的建筑也能存在4000年——当然,温湿度、气候和人类活动影响必须考虑,这就是选址问题,也是核能领域已经高度重视的问题。还要考虑工程质量的问题,这个并不在今天的讨论之内。

  第四,废物的管理难度很大程度上取决于它的体积。之前说了,如果核废物管理方面能够落实“废物最小化”原则,真正的需要长期与人类、环境隔离的废物量(含有长半衰期的放射性原子的废物)是可以非常少的。

  这方面的工作,现在有好多科学家和技术人员在做,比如乏燃料后处理就可以把乏燃料中95%左右质量的成分提取出来再利用,比如对长寿命放射性原子的分离,又可以把长寿命废物总量从5%进一步减少到0.1%左右。即使不考虑把这些长寿命放射性原子嬗变掉,需要长期管理的放射性废物也已经大大减少。如此小规模的放射性废物,咱们简单的不负责任的说,就把它们废物集中起来,包个瓷实,找个偏远无人地区,参照希特勒地下堡垒标准建设,派军队把守起来就妥妥的了。

  接下来,再谈谈废物储存过程的放热问题。前面说过,这也是原子衰变过程必然出现的问题,不可避免。但废物含有的放射性原子数量是随着衰变在减少的,所以放热也是随着时间推移在减少的。所以放射性废物的处置,并不是简单的深埋地下就可以的,而是有非常科学、系统的管理方法。

  恰巧,我今年写了一篇关于地质处置废物特性研究的文章,其中谈到了美国的尤卡山废物处置。他们要在乏燃料卸料后存放50年以上,才会放到处置库里面去。而且处置库是进行强制通风的,从放入废物开始通风,到废物库装满以后还要再通风50年。那以后乏燃料自己放出的热量就小了很多,足够保障安全了。

  当然各个国家的废物最终处置方案不同,美国尤卡山只是一个方案,我举这个例子也只是为了说明,放射性废物处置过程的放热已经被充分考虑到,并且会控制在安全范围之内。

  对了,大家还记得小时候学到的地球的结构吗?据说(我其实一直怀疑)地球中心有一片热得不得了的区域(地核),那地方每时每刻都进行着剧烈的核反应,有几千度的高温。但地球并没有被崩飞,而且地球表面生活的人类还在上网,并愉快的讨论着核废物问题……(刘学刚,清华大学教师,主要从事核燃料循环、核化学化工方面的教学、研究和相关工程管理工作)