首页 > 行业资讯

2019年成为非电池储能技术取得突破性发展的一年

来源:新能源网
时间:2019-11-05 09:06:42
热度:

2019年成为非电池储能技术取得突破性发展的一年对于非电池储能系统来说,2019年获得突破性发展的一年,抽水蓄能、燃气发电和蓄热储能技术在这一年的部署和改进取得了重大进展。许多行业

对于非电池储能系统来说,2019年获得突破性发展的一年,抽水蓄能、燃气发电和蓄热储能技术在这一年的部署和改进取得了重大进展。许多行业参与者正在从试点项目转向签约项目,这将扩大部署规模,并降低成本。

抽水蓄能技术是一种成熟可靠的长期储能技术,抽水蓄能闭环系统可以使用两个人工水库,与自然水体没有任何联系。如蒙大拿州和亚利桑那州的项目所示,抽水蓄能闭环系统可以设计为发电8到10个小时储能系统。

在美国的27个获得许可的抽水蓄能项目中,大多数位于16个州,总装机容量为18.8 GW,至少已使用了30年。此外,美国联邦能源管理委员会已经批准20GW新装机容量的初步许可,并且储能开发商还提交了另外19 GW装机容量的申请。

美国还有更多建设抽水蓄能设施的潜力,据估计在全球各地可以建设50万个抽水蓄能设施,这在技术上是可行的,这意味着建设抽水蓄能设施具有很大的潜力。

抽水蓄能设施的建设成本并没有想像那么高,可能是因为只使用可逆式水力涡轮机这个组件,而其他费用取决于现场建设,从土方工程到建造包含水力涡轮机的发电站。一项成本预测得出的结论是,抽水蓄能设施与锂离子电池储能系统相比更具成本竞争力。

例如,Copenhagen Infrastructure Partners去年夏天在蒙大拿州进行的一个装机容量为400MW抽水蓄能项目获得股权投资,这个抽水蓄能项目具有施工和运营许可证,施工将于明年开始。

氢能发电

氢能发电是另一种储能技术,是一种中等规模的储能装置。其工作原理是使用可再生能源产生的电力对水进行电解,并将产生的氢气可以存储起来,然后用于燃料电池发电。这是一个潜在的长期储能方案。

在过去一年中,美国至少部署了三座小型工业氢能发电装置,全部使用质子交换膜(PEM)电解技术,通过利用太阳能风能将水电解成氢和氧来产生氢气。由此产生的氢气可以储存在压力容器中最终用于燃料电池,由于储氢装置与电解槽装置是分开的,因此对于给定的电解槽系统来说,储氢容量没有技术限制。

虽然质子交换膜和其他电解水技术已经很成熟,但实现更加经济的规模化生产是一项挑战。氢能发电技术可能需要在更多市场中立足,扩大规模,并降低成本,才能成为具有成本竞争力的储能选择。

如今已经开始大规模的生产。去年2月,Hydrogenics公司宣布计划在加拿大为液化空气公司建造一套20MW质子交换膜电解槽系统。该系统当时被称为世界上最大的氢电解项目,每年的氢气产量将近3000吨。

同样在去年2月,挪威氢气生产商Nel ASA公司宣布在瑞士实施一项的30 MW电解槽项目框架合同。该项目将从一个2MW的集装箱式质子交换膜电解槽开始,并将氢气出售给H2 Energy的附属公司Hydrospider AG,为其燃料电池卡车车队提供燃料。

ITM Power公司在德国宣布部署一个10MW 质子交换膜电解槽,并设计了一种100MW系统,根据ITM公司报告,目前电解槽的成本现在低于800欧元/kW,到2020年中期将降至500欧元/ kW以下。

荷兰的一个工业和学术联盟已设定了建设一个GW级电解设施目标,到2025年开始生产氢气,耗资约3.5亿欧元。

另一种可行的储能解决方案是使用氢气生产氨气。日本的JGC公司已经报告了一种将氢气转化为氨气的有效方法,可以将其燃烧进行发电。JGC公司认为,与氢气相比,氨气在安全性和成本效益方面具有各种优势。

蓄热储能

蓄热储能的一个众所周知的应用是熔融盐储能,亚利桑那州的Solana集中式太阳能发电厂就采用了这种储能技术,其熔融盐存储的热量用于驱动蒸汽轮机。然而,热储能还涉及其他存储热量的方式,例如低温储能。

总部位于英国的Highview Power公司于2018年6月开始在曼彻斯特附近运营一个装机容量为5MW低温储能设施。这项技术利用电力在零下320华氏度冷却和液化空气,将液态空气储存在绝缘的低压存储罐中,然后将液态空气暴露在环境温度下,使其迅速重新气化,以其膨胀至液态体积的700倍,为发电机提供动力。

Highview Power公司估计,一个200 MW/2GWh的10小时低温储能系统的平准化成本为 140美元/MWh。类似的低温项目也在进行中。例如,去年7月,Highview Power公司宣布与总部位于内布拉斯加州的Tenaska Power Services签订合同,将在两年内开发高达4GWh的低温储能设施。

根据与南加州爱迪生(SCE)的合同,总部位于加利福尼亚的Ice Energy公司目前正在安装1200个低温能源系统,并对这些系统进行集中控制,以管理峰值需求和负载转移。

Siemens Gamesa公司提供了一种称之为具有成本竞争力的技术:电热储能。用电将绝热容器中的火山石加热到600℃。随后,使用常规蒸汽轮机将热量转换为电能,从而实现了45%的往返效率。该公司表示,该技术可用于改造已退役的化石燃料发电厂,并计划于今年晚些时候在一家试点工厂开始运营。

展望未来

过去一年的储能技术发展表明,电池储能系统并不是唯一的储能技术。可以长期储能的其他技术也在不断发展,并且这些储能技术在未来一年将会得到更多行业人士的关注。