首页 > 环保节能

<0.3mg/L!这污水厂靠调低溶解氧 就获得WEFTEC 2022大奖?

来源:环保节能网
时间:2022-10-24 09:00:51
热度:

<0.3mg/L!这污水厂靠调低溶解氧 就获得WEFTEC 2022大奖?今年八月底,美国的水环境联合会(Water Environment Federation)公布了今年运行设

今年八月底,美国的水环境联合会(Water Environment Federation)公布了今年运行设计杰出奖的获奖名单,一共有三个获奖项目。

水资源回收工厂案例

Seneca水资源回收工厂(WRRF)由华盛顿郊区卫生委员会水务部(WSSC Water)公司运营。WSSC Water成立于 1918 年,是目前美国最大的供水和污水处理公司之一,服务人口超过190 万。WSSC Water运营着6个水资源回收工厂,日处理总量约43万m³,而其两个饮用水厂每天可生产约75万m³的饮用水。

虽然Seneca WRRF长期都满足或优于严格的出水标准( TN<4 mg/L, TP<0.27 mg/L),但背后也付出了大量能量和化学品消耗的代价。

传统的生物脱氮除磷污水厂(BNR污水厂)处理效率低下的一大原因是设计理念僵化,没有因地制宜,仅凭过往经验进行基本调整,缺乏对不同氧化还原条件下的碳转化过程的了解,而且大多污水厂运行人员对生物除磷知之甚少。为了能采用更低耗环保的工艺,并且应对日后可能更严格的出水要求,WSSC Water和美国水研究基金会(Water Research Foundation - WRF)合作,成了专门的合作示范项目,探索对现有BNR污水厂进行原位效率提升的可行性。他们还找来了Brown and Caldwell(工程咨询公司)和西北大学(Northwestern University)共同参与此项目。

污水厂概况

Seneca水资源回收工厂位于华盛顿西北边的郊区,日处理能力约为11万m³。污水厂采用5段式的Bardenpho工艺 ,再通过二沉池和滤池满足严格的氮磷出水要求。

污水厂有五条平行处理线。2021年春天,项目团队将其中一条处理线用来进行测试,并对做出以下改动:

1) 内部混合液循环 (IMLR) 将进水流量从400%降至200%

2) 安装基于氨氮的曝气控制系统 (ABAC) ,对所有曝气区的溶解氧 (DO)进行控制,包括后曝气。好氧区末端的氨设定点为 1.5 mg/L;最小DO为 0.2,最大DO值1.5 mg/L

3) 停止后缺氧区的甲醇投加

4) 将后缺氧区体积从17%减至9%

项目目标

1) 尽可能地利用进水中的碳来脱氮除磷,并减少曝气量

2) 将生物除磷和同步硝化反硝化(SND)相结合,以实现高效的完全生物脱氮除磷

3) 运用部分反硝化+厌氧氨氧化(PdNA)进一步降低出水的氮浓度

值得一提的是,Brown and Caldwell公司的工程师们也坦承,污水厂没有初沉池,而测试处理线也没有专用的二沉池,所以其他四条线的运行条件发生改变的话,微生物的变化情况会影响到测试线,反之亦然。虽然他们知道这会导致实验设计缺乏绝对严谨性,但受限于实际条件也只能接受。

他们的实验计划包括:

- 每周采集两个样品(含上/下午),分析指标包含进水和出水的氨氨、有机磷、硝氮和亚硝氮;

- 序批式测试确定单位反硝化率(无外加碳源),采样点位于曝气区末端、后缺氧区前;

- 监测测试处理线和其余处理线的曝气速率;

- 收集DNA样本进行微生物种群分析;

- 收集聚羟基链烷酸酯(PHA)样品来了解后缺氧区的反硝化的碳转化过程。

项目结果

结果显示,即使没有投加碳源,测试线出水的氨氮均值仍小于0.2mg/L,TIN为1.9mg/L,正磷酸盐小于0.2mg/L(但在进二沉池前,他们仍会投加少量硫酸铝对磷酸作进一步去除)。

他们认为同步硝化反硝化以及后缺氧区的反硝化是测试处理线的脱氮率进一步改善的关键。这得益于低DO的运行条件,这也确保了聚磷菌良好的吸磷效率,所以出水磷浓度很低。

通过基于氨氮的曝气控制(ABAC),DO可以维持在0.3mg/L左右的水平,这也大大节省了曝气成本。与其他处理线相比(DO约为1.5mg/L),测试线的曝气量减少30%。

与其他处理线相比(需要碳源),测试线在后缺氧区通过反硝化作用去除超过4 mg/L的氮,出水硝氮的浓度和其他处理线相当。单位反硝化速率 (SDNR) 测试显示,低 DO 条件对反硝化率的贡献高于因内源呼吸产生的反硝化反应。这说明,后置反硝化很可能是依靠进水的内在碳源驱动的。

总之,他们对这个出水效果已相当满意,足以让WSSC Water其他5个污水厂进行效仿。

厌氧氨氧化潜力

此外,示范项目还正在考察厌氧氨氧化对进一步降低出水总氮的可行性。

因为部分反硝化会导致亚硝氮的积累,而由于后缺氧区的水力停留时间(HRT)较短,这可能会加剧亚硝氮的积累。数据显示这部分的亚硝氮浓度约为0.8mgN/L。他们认为如果能发挥厌氧氨氧化的作用,也许能解决这个问题。如下图所示,他们在前置厌氧区、好氧区末端和后缺氧区都安置了装有anammox填料的箱子,来考察anammox的活性。

他们将通过这些填料盒,考察好氧段末端由内碳源产生的亚硝氮能否用于厌氧氨氧化反应,并通过16S rRNA基因测序进行微生物群落分析。可惜小编目前暂时没法找到关于这部分测试结果的公开信息。

小结及展望

总的来说,基于氨氮的曝气控制(ABAC)貌似非常有吸引力,对于已装有传感器的污水厂,只需要一周的时间就能实施应用,员工不难上手。而且改造效果也很显著,例如低溶解氧条件(<0.3mg/L)可节省约30%的曝气能耗,还带来良好的生物脱氮除磷效果——在没有外加碳源的条件下,出水的TIN和正磷酸盐(OP)分别<2mg/L和0.2mg/L。据估算,Seneca水资源回收工厂的5条平行处理线如果都完成升级改造,可为污水厂每年节省575000美元的费用。WSSC Water已经计划将此技术应用到另外5座WRRF中,这最终将对切萨皮克湾环境保护做出重要贡献。