五部门关于开展2024年新能源汽车下乡活动的通知
太阳能聚合物电池的原理及发展前景
太阳能聚合物电池的原理及发展前景 1. 有机/聚合物太阳能电池的基本原理 有机/聚合物太阳能电池的基本原理是利用光入射到半导体的异质结或金属半导体界面附近产生的光生伏打效应(P
1. 有机/聚合物太阳能电池的基本原理
有机/聚合物太阳能电池的基本原理是利用光入射到半导体的异质结或金属半导体界面附近产生的光生伏打效应(Photovoltaic)。光生伏打效应是光激发产生的电子空穴对一激子被各种因素引起的静电势能分离产生电动势的现象。当光子入射到光敏材料时,光敏材料被激发产生电子和空穴对,在太阳能电池内建电场的作用下分离和传输,然后被各自的电极收集。在电荷传输的过程中,电子向阴极移动,空穴向阳极移动,如果将器件的外部用导线连接起来,这样在器件的内部和外部就形成了电流。对于使用不同材料制备的太阳能电池,其电流产生过程是不同的。对于无机太阳能电池,光电流产生过程研究成熟,而有机半导体体系的光电流产生过程有很多值得商榷的地方,聚合物电池也是目前研究的热点内容之一,在光电流的产生原理方面,很多是借鉴了无机太阳能电池的理论(比如说其能带理论),但是也有很多其独特的方面,现介绍如下:
一般认为有机/聚合物太阳电池的光电转换过程包括:光的吸收与激子的形成、激子的扩散和电荷分离、电荷的传输和收集。对应的过程和损失机制如图1所示。
图1 聚合物太阳能电池光电转换过程和入射光子损失机理
1.1 光吸收与激子的形成
当太阳光透过透明电极ITO照射到聚合物层上时,不是所有的光子都能被聚合物材料所吸收的,只有光子能量hν大于材料的禁带宽度Eg时,光子才能被材料吸收,激发电子从聚合物的最高占有轨道(HOMO)跃迁到最低空轨道(LUMO),留在HOMO中的空位通常称为“空穴”,这样就形成了激子,通常激子由于库仑力的作用,具有较大的束缚能而绑定在一起。对于入射到地面的太阳光谱从其能量分布来看,大约在700nm处能量是最强的,因而所使用的激活层材料其吸收光谱也应该尽量的接近太阳的辐照光谱,并且在700nm处达到最强的吸收,这样有力于激活层材料对光的吸收和利用。但是从目前研究的聚合物材料来看,其吸收光谱均不能与太阳光谱很好的匹配。
1.2 激子扩散和电荷分离
通常情况下,光激发产生的激子要经过一定的路径,传输到合适的位置才能进行解离。在传输过程中激子迁移的动力是扩散。当束缚的激子扩散到由半导体/金属、有机层/有机层、有机层/无机层所形成的界面处可以完成激子的解离。但是激子的扩散长度是有限的,一般在10nm左右,距离界面10nm以外的激子是得不到解离的,对光电流没有贡献。当激子迁移到界面处,并在界面处解离成功才能形成自由的载流子(正、负电荷),自由的载流子在内建电势或是外加电场力的作用下,会产生定向的运动,从而使两种载流子分开。
1.3 电荷的传输和收集
电子在聚合物中的传输是以跳跃的方式进行的,迁移率比较低。如MEH-PPV(聚2-甲氧基-5-(2'-乙基-己氧基)-1,4-亚苯基亚乙烯基)的空穴迁移率是10-7cm2/V·S,聚噻吩的是10-5cm2/V·S,而在这两种材料中电子的迁移率要远低于空穴的迁移率。向两个电极传输的正负电荷,最终会传输到电极处被各自的电极收集。因而电荷的收集效率也是影响光伏器件功率转换效率的关键因素。主要影响电荷收集的因素是电极处的势垒,再有就是激活层与电极界面的接触情况。
上一篇:UPS蓄电池常用维护技巧
-
24V/5A太阳能控制器电路设计2016-06-15
-
锂聚合物电池的概念及参数简介2016-06-15
-
基于超级电容-铅酸蓄电池混合储能的太阳能充电器2016-06-15
-
基于SPCE061的MPPT太阳能锂电池充电器设计2016-06-15
-
一种多功能太阳能移动电源箱的设计方案2016-06-15
-
改善太阳能电池效率 利用蓝光光盘最新奇2016-06-15
-
阴天也能正常充电的太阳能电动车2016-06-13
-
TI升压转换器支持便携式电子应用中太阳能和微型燃料电池的创新设计2016-06-13
-
7大点看清聚合物锂电池和锂电池的区别2016-06-13
-
新能源车发展前景看好 仍需提升技术完善产业链2016-05-10
-
新能源车电池发展前景可期 但回收难题仍待破解2016-03-16
-
日产拟革新充电技术 太阳能/无线充电齐上阵2016-03-16
-
特斯拉布局电池业务 落地夏威夷太阳能项目2016-03-16
-
吉利全球鹰IG太阳能电动汽车2015-12-18
-
龙华HLJ6110BEV太阳能电电混合城市客车2015-12-18