五部门关于开展2024年新能源汽车下乡活动的通知
燃料电池发动机双核主控制器的实现
燃料电池发动机双核主控制器的实现 随着清洁能源需求的增加,燃料电池发动机及其在汽车动力系统中的应用越来越重要。由于不受热机卡诺循环的限制,目前各类燃料电池实际的能量转化率均可达4
随着清洁能源需求的增加,燃料电池发动机及其在汽车动力系统中的应用越来越重要。由于不受热机卡诺循环的限制,目前各类燃料电池实际的能量转化率均可达40%~60%;燃料电池环境友好、工作安静、噪声很低。燃料电池发动机由空气系统、氢气系统、水热管理系统、增湿系统和电堆等几部分组成,燃料电池主要由阳极、阴极、电解质组成。是一种将氢、氧的化学能通过催化反应直接转化成电能的装且。其最大特点是清洁、高效。被视为石油等生化能源的替代品。燃料电池种类较多,其中质子文换膜燃料电池在电动汽车上用运最广泛。燃料电池发动机是电动汽车的关键部件。其结构如图1所示。
1 分布式燃料电池发动机控制系统
针对燃料电池发动机的上述要求,清华大学和大连化学物理研究所合作,研制了分布式燃料电池控制系统。整个系统以燃料电池发动机主控制器为核心,包括了2个发动机的独立控制子系统,每个发动机控制系统包括电堆控制器节点、增湿控制器节点、风机控制器节点以及4个单片电压测量节点等。加上燃料电池发动机的主控制器,整个控制系统共包括15个控制器节点
2 基于ARM+MPC561双单片机的主控制器设计
2.1 控制器硬件框架
ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。技术具有性能高、成本低和能耗省的特点。适用于多种领域,比如嵌入控制、消费/教育类多媒体、DSP和移动式应用等。ARM将其技术授权给世界上许多着名的半导体、软件和OEM厂商,每个厂商得到的ARM公司(6张)都是一套独一无二的ARM相关技术及服务。利用这种合伙关系,ARM很快成为许多全球性RISC标准的缔造者。
控制器的硬件框架如图2所示。该控制器采用MPC56x和AT91SAM9261S单片机双核处理器的模式,其中底层IO驱动采用MPC56x单片机[1],而控制算法采用ARM9单片机[2]。采用ARM9单片机进行控制算法的优点是:
(1)ARM的主频高、运算速度快,最高主频可以达到190 MHz,运算速度可达210 MIPS,大大高于MPC56x的56 MHz;
(2)可以配套的内存大,拥有丰富的内存扩展接口,不但能实现与MPC56x相同的SRAM扩展,还拥有专门的SDRAM管理模块,能进行SDRAM扩展,其容量可以轻易达到100 MB以上;
(3)外设接口丰富,USB2.0全速主机双端口及设备端口,可以实现与上位机的高速数据传输,保证上传和下载数据的高效和可靠;
(4)价格低廉,AT91SAM9261S零售价只需63元,小批量价格仅为6美元,而MPC561零售价格高达40美元,在价格上具有很强的竞争力。
MPC56x的优点是:带有丰富的外围周边模块,能够直接接口底层的各种信号。因此将MPC56x和ARM结合起来,可以保证控制器既具有强大的控制算法,又有强大的底层实时驱动能力。
2.2 基于ARM的控制算法开发方法
燃料电池发动机的控制算法框架如图3所示。整个上层控制算法可以分解为2层:输入输出信号接口和控制算法逻辑本身。其中输入输出信号接口在MPC56x中运行,而控制算法逻辑直接在ARM中运行。
上层控制算法可直接利用MATLAB/SIMUlink中的Real Time Workshop工具箱进行开发。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。其下的Simulink组件具有强大的算法仿真调试功能;Stateflow模块提供直观可靠的逻辑分析/状态机;Real-time Workshop模块支持自动代码生成,能将仿真测试后的框图模型自动生成支持ARM9数字核心的C代码。
2.3 控制器测试
对于AT91SAM9261S+MPC561的双数字核心燃料电池主控制器,现阶段在实验室中利用Vector公司的CAN Case网络通信硬件工具以及CANalyzer软件模拟整车TTCAN网络和燃料电池控制系统的底层控制器,并采集实验数据对双数字核心燃料电池主控制器进行仿真测试,控制器测试照片如图4所示。
通过实际测试,验证了采用MPC+ARM的双数字核心架构的燃料电池主控制器在运行同样的控制算法时,要比采用单个MPC561数字核心的控制器快得多。在MPC和ARM之间的CAN通信方面不存在任何问题,可以应用于实车运行中。
(1)为了满足复杂的燃料电池发动机或者新能源汽车动力系统的控制算法,本论文提出了采用ARM9加MPC56x单片机的双核控制器设计的思路。由计算性能更好的ARM9负责控制算法,而驱动能量较好的MPC56x负责输入输出驱动。
(2)ARM9的控制算法可以实现在MATLAB/SIMUlink中的图形化编程,然后利用控制代码自动生成技术实现上层控制算法的高效开发。
(3)在本例中,由于ARM9和MPC56x的数字核心的安装接口完全一致,因此可以根据实际应用的复杂程度决定是只用一个数字核心MPC56x,还是ARM9+MPC56x的双数核心。其为教学和科研提供了一个模块化的科研平台,为兼容各种简单和复杂控制算法的应用系统提供了一个统一的硬件平台。
来源:LILI
上一篇:混合动力系统研发的技术问题罗列
-
燃料电池电动汽车的缺点2023-11-30
-
燃料电池汽车工作原理2023-11-30
-
燃料电池汽车特点2023-11-30
-
燃料电池汽车关键技术2023-11-30
-
中国氢燃料电池汽车落后国外5—10年2023-11-30
-
通用氢燃料电池汽车有望提前量产2023-11-30
-
燃料电池车,是在侮辱谁的智商?2023-11-30
-
电动车的生机远远大于燃料电池汽车2023-11-30
-
燃料电池客车最有希望率先商业化2023-11-30
-
燃料电池汽车前景如何2023-11-30
-
燃料电池VS锂电池 性能及优劣大对比2016-06-13
-
质子交换膜燃料电池性能影响的分析2016-06-13
-
基于质子交换膜燃料电池性能的研究分析2016-06-13
-
燃料电池的简易测试方案2016-06-13
-
车主亲体验:在美开氢燃料电池车的“苦”2016-06-13